Prof. Dr. Alfred Toth

Subzeichen als Abbildungen von Primzeichen aus Domänen und Codomänen mit permutierten Kontexturenzahlen

1. Ein Subzeichen ist das kartesische Produkt aus zwei Monaden, von Bense (1980) als Primzeichen bezeichnet:

$$(a.b) = a. \times .b \text{ mit } a, b, \in \{1, 2, 3\},\$$

wobei der rechte Punkt P^{ρ} und der linke Punkt P^{λ} den Morphismus (a \rightarrow b) abkürzen:

$$\langle a. \in P^{\rho}, .b \in P^{\lambda} \rangle =: (a \rightarrow b) = \rightarrow_{\alpha,\beta}.$$

Für Kontexturen K wollen wir kleine Buchstaben verwenden: i, j, k, ... \in K. Nach dem oben Gesagten haben wir dann also

$$\langle a._{i,j} \in P^{\rho}, .b_{k,l} \in P^{\lambda} \rangle =: (a \rightarrow b) = \rightarrow_{\alpha,\beta < i,j > \rightarrow < k,l > .}$$

Einfach gesagt, gibt es also die folgenden Abbildungsmöglichkeiten zwischen kontexturierten Subzeichen:

$$a_{ij} \mathop{\rightarrow} b_{kl} \qquad a_{ij} \mathop{\rightarrow} b_{lk} \qquad a_{ji} \mathop{\rightarrow} b_{lk} \qquad a_{ij} \mathop{\rightarrow} b_{jk}$$

$$a_{ij} \leftarrow b_{kl} \qquad a_{ij} \leftarrow b_{lk} \qquad a_{ji} \leftarrow b_{lk} \qquad a_{ij} \leftarrow b_{jk}$$

2. Da für n-kontexturale (semiotische) Systeme gilt, dass (n-1)-stellige Kontexturenzahlen nur bei genuinen Subzeichen (identitiven Morphismen) aufscheinen, da ferner jede Zeichenklasse (mit Ausnahme der genuinen Kategorienklasse, der Hauptdiagonalen der semiotischen Matrix) maximal 1 genuines Subzeichen enthält, folgt, dass die kontexturalzahlige Struktur einer allgemeinen Zeichenklassen einer der folgenden drei Strukturen folgt:

 $ZkI = (3.a_{ijk} \ 2.b_{ij} \ 1.c_{kl})$

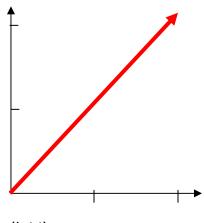
 $ZkI = (3.a_{ij} \ 2.b_{ijk} \ 1.c_{kl})$

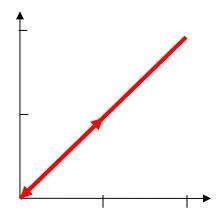
 $ZkI = (3.a_{ij} \ 2.b_{kl} \ 1.c_{ijk})$

(wobei i, j, k nicht paarweise verschieden sein müssen).

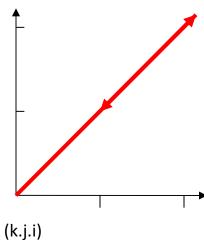
 $\mathcal{D}(i.j.k) = \{(i.j.k),\, (i.k.j),\, (k.i.j),\, (k.j.i),\, (j.k.i),\, (j.i.k)\}:$

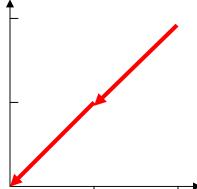
(i.j.k)

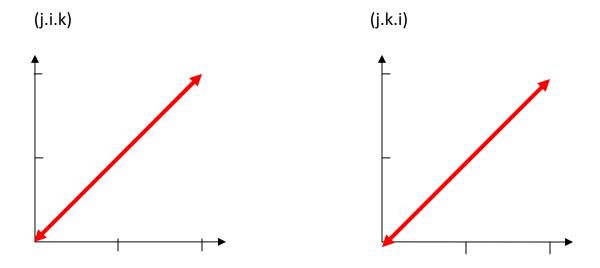




(i.k.j)







3. Sei $a \in tdPz$ (triadische Peirce-Zahlen) und $b \in ttPz$ (trichotomische Peirce-Zahlen). Dann kann man die tdPz und die ttPz jeweils als Zeile und Spalte einer im triadischen Falle quadratischen 3×3 -Matrix notieren und erhält auf diese Weise die folgende, von Kaehr (2008, S. 6) gegebene kategorial-semiotische Matrix:

1	2		3			
$1 \rightarrow 1_{1.3}$	$1 \rightarrow 3$	2 ₁	$1 \rightarrow 3_3$			
$2 \rightarrow 1_1$	$2 \rightarrow 2$	2 _{1.2}	$2 \rightarrow 3_2$			
$3 \rightarrow 1_3$	$3 \rightarrow 3$	2 ₂	$3 \rightarrow 3_{2.3}$			
						.3
						
	.1	1. —		.2	1.	
	.1				2.	.3
		2.	*	.2	→	
	.1	3. —		.3	3.	.3
	$1 \rightarrow 1_{1.3}$ $2 \rightarrow 1_{1}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Dasselbe p.p. (vgl. Toth 2010) für die übrigen 3 Matrizen bzw. semiotischen Systeme:

	1	2	3
1	$1_{1.3} \rightarrow 1$	$1_1 \rightarrow 2$	$1_3 \rightarrow 3$
2	$2_1 \rightarrow 1$	$2_{1.2} \rightarrow 2$	$2_2 \rightarrow 3$
3	$3_3 \rightarrow 1$	$3_2 \rightarrow 2$	$3_{2.3} \rightarrow 3$
	1	2	3
1	1 ← 1 _{1.3}	$1 \leftarrow 2_1$	1 ← 3 ₃
2	$2 \leftarrow 1_1$	$2 \leftarrow 2_{1.2}$	2 ← 3 ₂
3	3 ← 1 ₃	3 ← 2 ₂	$3 \leftarrow 3_{2.3}$
	1	2	3
1	1 _{1.3} ← 1	1 ₁ ← 2	1 ₃ ← 3
2	$2_1 \leftarrow 1$	2 _{1.2} ← 2	2 ₂ ← 3
3	3 ₃ ← 1	3 ₂ ← 2	3 _{2.3} ← 3

Bibliographie

Bense, Max, Einführung der Primzeichen. In: Ars Semeiotica 3/3, 1980

Toth, Alfred, Kontexturierte Peirce-Zahlen als Domänen und als Kodomänen. In: Electronic Journal of Mathematical Semiotics, 2010

14.11.2010